A New Entry to π -Allylcobalt Tricarbonyls Using (CH₃)₃SiCo(CO)₄

Naoto Chatani, Yasuhiro Yamasaki, Shinji Murai,^{*} Noboru Sonoda Department of Applied Chemistry, Faculty of Engineering, Osaka University, Suita, Osaka 565, Japan

Abstract: The reactions of (CH₃)₃SiCo(CO)₄ with allyl acetates, enones, and a diene monoepoxide gave corresponding π-allylcobalt tricarbonyls.

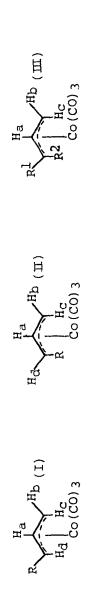
In the new $\operatorname{Co}_2(\operatorname{CO})_8$ -catalyzed reactions of various oxygenated compounds with HSiR₃ and CO, incorporation of CO takes place with cleavage of the carbonoxygen bonds in the substrates.¹⁾ Silylcobalt carbonyl, R₃SiCo(CO)₄ (1), generated <u>in situ</u> has been suggested as the key catalyst species responsible for the formation of carbon-cobalt bond which is required for the incorporation of CO. Although some silylcobalt carbonyl complexes 1 have long been known, their chemistry has not been well explored yet.²⁾ We have now studied the stoichiometric reaction of 1 with some oxygenated compounds (<u>vide infra</u>) with the expectation that the known oxygenophilicity of silicon in 1 would bring about cleavage of carbon-oxygen bond in the substrate with concomitant formation of carboncobalt bond. The reactions of (CH₃)₃SiMn(CO)₅ with ethers and aldehydes have been recently reported by Gladysz.³)

The reactions of readily available $(CH_3)_3SiCo(CO)_4^{4}$ (1a) with allyl acetates, enones, and a diene monoepoxide have given the results which constitute a new entry to and a complementary preparative method of π -allylcobalt tricarbonyl complexes,⁶) as outlined in eq 1-3. π -Allylcobalt complexes have been demonstrated recently by Hegedus to be promising discrete intermediates in organic synthesis.⁷)

$$OAc + (CH_3)_{3}SiCo(CO)_{4} \longrightarrow (CH_3)_{3}SiOAc (1)$$

$$Ia + (CH_3)_{3}SiCo(CO)_{4} \longrightarrow (CH_3)_{3}SiOAc (2)$$

$$O + (CH_3)_{3}SiCo(CO)_{4} \longrightarrow (CH_2OSi(CH_3)_{3} (2)$$


$$O + (CH_3)_{3}SiCo(CO)_{4} \longrightarrow (CH_2OSi(CH_3)_{3} (3)$$

entry	substrate	<pre>m-allylcobalt tricarbonyl^{b)}</pre>	ref.
1	// OAc	Co (CO) 3 80 %	c)
2	OAc	Co(CO) ₃ 52 % Co(CO) ₃ 28 %	d)
3	OAc	Co (CO) 3 44 %	d)
4	Ph OAc	Ph Co (CO) 3 63 %	e)f)
5	Ph OAc	Ph Co(CO) ₃ 56 %	e)f)
6	онс	Me ₃ SiO Co(CO) ₃ 44 % Me ₃ SiO Co(CO) ₃ 20 %	
7	Ŷ	Me ₃ SiO Co(CO) ₃ 12 % Me ₃ SiO Co(CO) ₃ 46 %	g)
8		Me ₃ Sio Co(CO) ₃ 50 %	f)

Table 1. The Reaction of $(CH_3)_3SiCo(CO)_4$ with Allyl acetates, Enones, and a Diene Monoepoxide^{a)}

a) Reaction conditions: The reaction was conducted with substrate(0.5 mmol), (CH₃)₃SiCo(CO)₄(0.7-0.9 mmol), and C₆D₆(0.5 mL) under N₂ and at 50°C for 1-1.5 h in a NMR tube. b) NMR yields based on the substrates. Yields were calculated on the basis of known quantities of an added standard (C₆H₆, C₆H₁₂) or CH₃COOSi(CH₃)₃ formed. c) Ref 8. d) J.A.Bertrand, H.B.Jonassen, and D.W.Moore, Inorg. Chem.,<u>2</u>, 601(1963). e) H.Alper, H.Des Abbayes, and D.Des Roches, J. Organomet. Chem.,<u>121</u>, C31(1976). f) NMR analysis of the reaction mixture showed the absence of the anti-isomer. g) The stereochemistry was tentatively assigned on the basis of NMR chemical shifts. See also Table 2.

TMS)
(C6D6,
Tricalbonyls
<pre>m-Allylcobalt</pre>
for
Data
NMR
$1_{\rm H}$
2.
Table

R	Ha	Ч ^Н	Н _С	нd	R	\mathbf{J}_{ab}	J _{ab} Jac J _{ad}	J _{ad}	JdR	Jbc	Jbd
H(I or II)	4.40(tt)	2.68(d)	l.85(d)			9	11			~0	
CH3(I)	4.26(dt)	2.55(d)	1.64(d)	2.72(dq)	1.23(d)	9	10	10	9	0~	°∼
сн ₃ (п)	4.48(dt)	2.94(d)	2.47(d)	3.89(quint) 0.83(d)	0.83(d)	6.5	12	6.5	6.5 ~0	0~	0~
Ph(I)	5.06(dt)	2.69(d)	l.84(d)	3.67(d)	7.04-7.12(m)	9	10	10		0~	°~
OSi(CH3)3(I)	4. 59 (ddd) 2.38 (dd)	2.38 (dd)	1.33(ðð)	5 . 01(d)		9	10	٢		Ч	0~
OSi(СH3)3(П)	4.07(ddd) 3.06(dd)	3.06 (dd)	3.18(ď)	6.17(dd)		9	10.5	3.5		0~	1.5
CH2OSi(CH3) ₃ (I) 4.52(dt)	4.52(dt)	2.56(d)	1.72(d)	2.80 (ddd)	3.60 (ABqd) a)	9	10	10	4,5	5~0	°~
R1, R ²	Н _а		q _H	H _c R ¹	R2	J _{ab}	Jac	Jbc	Ì	}	
CH3, CH3(Ⅲ)	4.28	.28(dd) 2.7	2.74(d) 2.1	2.17(d) 1.38(s)	(s)06.0 (٢	12	ີ			
OSi(CH ₃) ₃ , CH ₃ (III) ^{b)} 4		.56(dd) 2.6	2.60(d) ca.	ca. 1.7 ^{c)}	1.29(s)	6.5	10.5	7			

siloxy group would be at lower field than H_a anti to the siloxy group. Compare the chemical shift with a) J_{AB}=12 Hz. b) The assignment is a tentative one on the basis of NMR chemical shift; H_a syn to the those H_a in R=OSi(CH₃)₃(I) and R=OSi(CH₃)₃(II). The assignment is also supported by CH₃ shift data. c) Overlapped with the CH₃(R¹) group signal of another isomer (R¹=CH₃, R²=OSi(CH₃)₃).

ì 2

10

9

l.70(s)

2.86(d)

2.94(d)

CH₃, OSi(CH₃)₃(III)^{b)} 4.04(dd)

To a solution of $(CH_3)_3SiCO(CO)_4$ (1.0 g, 4.2 mmol) in C_6H_6 (2.5 mL) was added $CH_2=CH-CH_2OAc$ (0.27 g, 2.5 mmol) at 15°C, and the solution was heated at 50°C for 1.5 h. The formation of π -allylcobalt tricarbonyl in the solution was evident from ¹H NMR (80% yield). Distillation (bulb-to-bulb, ~30°C/3 torr)⁸) allowed the isolation (52% yield) of the pure cobalt complex as a pale yellow liquid.

The reaction of the silylcobalt <u>la</u> can be conducted conveniently in a NMR tube using C_6D_6 as a solvent. These results and ^lH NMR data for the products are given in Tables 1 and 2, respectively. The type of the products or the product distribution may suggest that these products have been derived <u>via</u> thermodynamically controlled processes.^{9,10}

References and Notes

- 1) (a) N. Chatani, S. Murai, and N. Sonoda, J. Am. Chem. Soc., <u>105</u>, 1370(1983).
 (b) Review: S. Murai and N. Sonoda, Angew. Chem., Int. Ed. Engl., <u>18</u>, 837(1979).
- 2) A. J. Chalk and J. F. Harrod, J. Am. Chem. Soc., <u>87</u>, 1133(1965); ibid., <u>89</u>, 1640(1967).
 Y. L. Baay and A. G. MacDiarmid, Inorg. Chem., <u>8</u>, 986(1969).
 H. G. Ang and P. T. Lau, Organomet. Chem. Rev. <u>A 8</u>, 235(1972).
 C. S. Cundy, B. M. Kingston, and M. F. Lappert, Adv. Organomet. Chem., <u>11</u>, 235(1973).
 F. Hofler, Topics Curr. Chem., <u>50</u>, 129(1974). See also references cited in lb.
- M. Marsi and J. A. Gladysz, Organometallics <u>1</u>, 1467(1982) and references cited therein.
- 4) The reported method for 1g⁵ was modified. To Co₂(CO)₈ (0.68 g, 2 mmol) in a 10 mL flask equipped with dry ice condenser was added HSi(CH₃)₃ (3.5 mL, 30 mmol) at -78°C. The mixture was warmed to 25°C with stirring over 1 h. The excess HSi(CH₃)₃ was removed in a stream of N₂. The residual black solid was sublimed at 40-45°C (0.5 torr) into a flask (-78°C) to give (CH₃)₃SiCo(CO)₄ (0.78-0.83 g, 80-85%, pale pink, ¹H NMR (C₆D₆, TMS) δ 0.45 ppm, s).
- 5) D. L. Morrison and A. P. Hagen, Inorg. Synth., <u>13</u>, 65(1972).
- 6) Known methods involve: CH₂=CH-CH₂X + NaCo(CO)₄ (or KCo(CO)₄), C=C-C=C + HCo(CO)_n and CH₃I + NaCo(CO)₄ + C=C-C=C. For a review, see: R. D. W. Kemmitt and D. R. Russell, "Comprehensive Organometallic Chemistry", Ed. G. Wilkinson, Pergamon Press, Oxford, 1982, vol. 5, pp 211-222.
- 7) L. S. Hegedus and Y. Inoue, J. Am. Chem. Soc., <u>104</u>, 4917(1982).
- 8) Lit. 39°C(15 torr), W. R. McClellan, H. H. Hoehn, H. N. Cripps, E. L. Muetterties, and B. W. Howk, J. Am. Chem. Soc., <u>83</u>, 1601(1961).
- 9) In each case transient signals in NMR were observed before they collapsed to the final product. However, the assignment of these transient signals has not been established yet.
- 10) This work was supported in part by Grant-in-Aid for Scientific Research No. 58550543 provided by The Ministry of Education, Science, and Culture, Japan.

(Received in Japan 8 September 1983)